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Digital 

computing Analog 

computing

The Timeline of Optical Computing
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Digital vs. Analog Photonic Computing
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Digital computing

(Logic, ALU, Control)

Analog computing

(ML, Optimization, Linear Algebra)

MZI

𝑦 = 𝑎 ⋅ 𝑥

2×2 Unitary Matmul (~100×20 𝜇𝑚2 )

Scalar Mul.  (~10×10 𝑢𝑚2 )

Micro-ring/

Micro-disk

[Lightelligence]

WDM-based Summation

WDM+PD
𝑦 = ∑𝑥𝑖

𝑥 𝑦

𝑎

[Ying et al, Nature Comm. 2020]



Photonic Computing Chips

oEvolve from electronics to integrated photonics
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Cerebras ASICNVIDIA GPU Google TPU

IBM TrueNorth Memristor

Source: Mitchell A. Nahmias, Bhavin J. Shastri, Alexander N. Tait, Thomas Ferreira de Lima and Paul R. 

Prucnal, “Neuromorphic photonics,” Optics & Photonics News, Jan 2018.

Flash

Digital electronics

Analog neuromorphic electronics

Nanophotonic ASIC

Optical-electronic 

hybrid chips

(~10 TOPS/W)

Fully-optical chips

Photonics

(~1E6 TOPS/W)

…
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What is unique about photonics?

potential
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Electrical Computing vs Photonic Computing

10Source: https://www.lightelligence.ai/

High speed

Electronic 

Comp Unit

Delay 100 𝑛𝑠 ~ 1 𝜇𝑠
A few hundred clock cycles

Photonic 

Comp Unit

Delay ≪ 1 𝑛𝑠

Computing as light propagate

Massive parallelism

Light propagate in parallel

Magnitude

Phase

Metal wires

Waveguides

High energy efficiency

Passive circuits consumes 

near zero static power

Electronic 

Comp Unit



Application Potentials of Photonic Computing

oUltra-fast, efficient digital control / ALU

oEnergy-efficient, real-time machine intelligence

11

Smart commun. network, distributed computing

Fast edge/mobile processing High-throughput datacenter processing

Scientific comp., optimization, bio / material..
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Full adder (2020)

Arithmetic operations

Comparator (2021)

Control circuits

Parity checker (2018)

Decoder and multiplexer (2020) 

Bitwise Logic operations

XOR gate (2012)NOR gate (2011)

Multi-operand (2019)

Progress in Optical Digital Computing

13

Optical building 

block library



(c) WDM-based Optical logic unit [2]

[1] Ying, Z. et al., JSTQE 2018

[2] Feng, C. et al., Photonics West 2020

WDM-based Electronic-Photonic Computing Circuits

o Inheritance: light in and light out

o Continuity: no OE/EO conversion

o Independence: no product between two optical basis 

o Parallelism: multiple input 𝜆s, multiple logic functions

𝜆1

𝜆2

𝜆3

𝜆1

𝜆2

𝜆3

𝑎

𝑥 𝑦

𝑦𝜆1 = 𝑥𝜆1 ∙ 𝑎

𝑦𝜆2 = 𝑥𝜆2 ∙ ത𝑎
𝑦𝜆3 = 𝑥𝜆3

(d) Hardware efficiency improvement of electrooptic (EO) logic gates using 

wavelength division multiplexing(WDM)
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Traditional Arch Electronic-Photonic Arch

Multiple wavelengths reuse the same unit !

OLU Features



Fabricated by AIM photonics (2018)

Full adder[Ying+, Nat commun 2020] Fabricated by AIM photonics (2019)

Photonic-Electronic Arithmetic Logic Unit (ALU)
oFrom electrical ALU to high-speed and energy-efficient photonic-electronic ALU

oWe demonstrate 20Gb/s photonic-electronic digital computing chips

oFor general-purpose digital computing

15



WDM-basedWDM-based Electronic Photonic Carry-Select Adder
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Replace electrical path (carry chain) to optical path



Electrical full 

adder

Optical

full adder

Latency of 

optical full adder  
Latency of 

electrical full adder  

,p g epbT nT T+ =
,p g sw opbT T T T n= + + 

Reduced to

Delay for 

generating P and G

Switch time of 

modulators

Optical propagation 

delay per bit

Electrical delay 

per bit

𝑇𝑝,𝑔 𝑇𝑠𝑤 𝑇𝑜𝑝𝑏 𝑇𝑒𝑝𝑏

𝑇𝑜𝑝𝑏 ≪ 𝑇𝑒𝑝𝑏

Advantages of Using Optics to Implement Additions

17



Chip Layout of the Electronic Photonic Full Adder
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Comparison with the state-of-the-art 

transistors

Comparison with the State-of-the-art Transistors
oCompared to 32 nm / 7nm (scaling) from Intel

o4× faster (20 GHz vs 5 GHz)

o>10× more energy-efficient

19

10× Low power than 

7nm @20 GHz

>70× Low power density 

than 7 nm @ 20 GHz

20 Gb/s



WDM-based comparator: Different λs, different functions

C Z Result

0 1 A=B

0 0 A>B

1 0 A<B

Truth table

[Feng C. et al., Laser & Photonics Reviews, 2021]

𝑝𝑘 = 𝑎𝑘⨂𝑏𝑘
𝑔𝑘 = 𝑎𝑘 ⋅ 𝑏𝑘

𝑐𝑘 = 𝑝𝑘 ⋅ 𝑐𝑘−1 + 𝑔𝑘
𝑧𝑘 = 𝑝𝑘 ⋅ 𝑧𝑘−1

WDM-based Photonic-Electronic Unsigned Comparator

𝐶: 𝐴 < 𝐵?
𝑍: 𝐴 = 𝐵?

20



Experimental results

@10 Gb/s @20 Gb/s

C Z Result

0 1 A=B

0 0 A>B

1 0 A<B

Truth table

C

Z

Experimental Results (2-bit unsigned comparator)
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[Feng C. et al., Nanophotonics, 2020]

Schematic of the WDM-based switching network

WDM-based Electronic-Photonic Switching Network
oApplications: decoder, multiplexer, demultiplexer
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@ 10 Gb/s @ 20 Gb/s

Output Input

𝑌7 𝑋3𝑋2𝑋1

𝑌6 𝑋3𝑋2𝑋1

𝑌5 𝑋3𝑋2𝑋1

𝑌4 𝑋3𝑋2𝑋1

𝑌3 𝑋3𝑋2𝑋1

𝑌2 𝑋3𝑋2𝑋1

𝑌1 𝑋3𝑋2𝑋1

𝑌0 𝑋1𝑋2𝑋3

Truth table

Experimental Results of the 3-8 Optical Decoder

23
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Hardware Limits in Machine Learning
Moore’s Law

×2 every 18 months
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AlexNet
GooLeNet

VGG

Seq2Seq ResNet-200

Xception

AlphaZero

BERT 
Large

GPT-2

GPT-3

Wav2Vec 2.0

MegaTron-
Turing NLG

Transforme
r
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Source: https://spectrum.ieee.org/nvidias-next-gpu-shows-that-transformers-are-transforming-ai

Source: https://openai.com/blog/ai-and-compute/

Need specialized / domain-

specific computing hardware 

for speed and efficiency 

breakthrough

ML Compute

×2 every 3.5 months

~5× the 

doubling rate



Photonic AI is Booming
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Foundry / EPDA Support in IndustryPhotonic Neural Network Trends in Academia

[SciRep’17]

[Nat. Photon’17]

[ASP-DAC’20]

[DATE’20]

[Nature’19]

[ASP-DAC’19]

[DATE’21]

[APR’20]

[Nature’21]

[HPCA’20]

[PhysRev’19] [Nature’21]

[Nat. Comm.’22]

[Nat. Comm.’22]

Photonic Computing Chip Designs

Electronic-Photonic Design Automation Tools

PDK / Tape-out / Packaging Support



Photonic AI Computing Basics

oPrinciple: light modulation, interference, photodetection

oGood at ultra-fast, parallel linear operations in the analog domain
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Computing Primitives

Scalar Multiply 

𝑦 = 𝑎 ⋅ 𝑥

Photonic Implementation

𝑥 𝑦

Light Modulation
𝑎

Mach-Zehnder Interferometer (MZI)

𝑥1

𝑥2

𝑦1

𝑦2
𝑹 2 = 𝑹 2

2×2 Unitary Matrix Multiply

𝒚 = 𝑹 2 × 𝒙

One-shot computing at speed-of-light!

𝒙
(light in)

𝒚
(light out)

Photonic Tensor Core (PTC)

𝑾𝒙 𝒚

𝑾 𝚽 = 𝑼𝚺𝑽∗

𝑽∗ 𝑼𝚺

=

Matrix-Vector Multiply (MVM)

𝒚 = 𝑾× 𝒙

Nonlinear
Absorber

Optical 

RRAM

E/O 

Convert

⋯



Photonic Tensor Core (PTC) Categories

oEncoding

oMVM principle

oMatrix Expressivity

28

1
𝑎 ≥ 0𝑎𝜃

1 cos𝜃 ⋅ 𝑒𝑗𝜙
𝜙

−𝜃
MZM MRR PCM

1 𝑎

Coherent 𝑥 𝑒𝑗𝜙(𝑥): magnitude + phase Incoherent |𝑥|: magnitude-only

Direct MVM: 𝑦𝑖 = ∑𝑗𝑤𝑖𝑗 𝑥𝑗 Indirect MVM: 𝒚 = 𝑾 Φ 𝒙

Subspace linear: 𝑊 ⊆ ℝ𝑁×𝑁 or ℂ𝑁×𝑁Universal linear: 𝑊 ∈ ℝ𝑁×𝑁 or ℂ𝑁×𝑁



Coherent ONN Architectures
oEncoding: 𝑥 𝑒𝑗𝜙(𝑥) magnitude + phase

oComputing: interference (indirect)

oMZI array [Shen+, Nat. Photon’17]

oSingular value decomposition 𝑊 = 𝑈Σ𝑉∗

oPhase decomposition

oUniversal linear units for arbitrary matrices

𝒙
(light in)

𝒚
(light out)

𝑾 𝚽 = 𝑼𝚺𝑽∗

𝑽∗ 𝑼𝚺

=

𝑹 2 =

𝒙
(light in)

𝒚
(light out)

𝑾 𝚽 = 𝑼𝚺𝑽∗

𝑽∗ 𝑼𝚺

=

Reck-style

Clements-style

29
Y. Shen, et al., “Deep learning with coherent nanophotonic circuits,” Nature Photonics 2017.

N(N-1)/2 MZIs N(N-1)/2 MZIs



Universal vs. Specialized Photonic Tensor Cores
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Specialized Hardware 

for Subspace Linear

Cross-disciplinary 

Research

Photonics

Design 

Automation

ML /

Architecture

?

⋯

⋯

⋯

[APL Photon.’21]

[DATE’21, TCAD’22]

[Nat. Comm.’22]

[DAC’22][ASP-DAC’22]

[HPCA’23][ICCAD’21][ICCV’21]

Universal Linear
⋯

[APL’19] [Nature’21] [Nature’22]

[Nature’21][DATE’19][SciRep’17]

[Nat. Photon.’17]

[ACS Photon.’22]
Trade off 

expressivity vs. 

efficiency 



Specialized Coherent ONN Architectures
oLeverage the matrix redundancy → reduce hardware cost → subspace linear
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𝑽∗ 𝑼𝚺

Instead of having general matrices…

Subspace matrices

𝑽∗′ 𝑼′𝚺

Large MZI array 𝒪(𝑛2) MZIs

Compact photonic structure

Universal Linear Op

Bulky

Device scaling? Physical limits

Higher compute 

density w/ the 

same chip sizeCompact

Specialized Linear Op

Compress

J. Gu, Z. Zhao, C. Feng, M. Liu, R.T. Chen, D.Z. Pan, “Towards Area-Efficient Optical Neural 

Networks: An FFT-based Architecture,” ACM/IEEE ASP-DAC, 2020. Best Paper Award



Butterfly-style Photonic Tensor Core
oEfficient circulant matrix multiplication in Fourier domain

32

𝑾11 𝑾1𝑞

𝑾𝑝1 𝑾𝑝𝑞

⋯

⋯

⋯ ⋯

𝒙1

𝒙𝑞

⋯×

w1

w1

w1

w1

w4

w4

w4

w4

w3

w3

w3

w3

w2

w2

w2

w2

×

𝒙11

𝒙12

𝒙13

𝒙14

𝑾𝑖𝑗 × 𝒙𝒋

𝑾𝑖𝑗

ℱ−1 ℱ 𝒘𝒊𝒋 ⊙ℱ 𝒙𝒋Block-structured matrix

Circulant matrix multiplication

𝒚𝒊 = ∑𝑗𝑾𝒊𝒋𝒙𝒋

Fourier-domain fast computation

𝒘𝒊𝒋𝒙11 𝒙12 𝒙13 𝒙14𝒙𝒋

FFT

∗

IFFT

ℱ(𝒘𝑖𝑗)

𝒘1 𝒘2 𝒘3 𝒘4

FFT

ℱ(𝒙𝑗)

𝒪(𝑘2)

𝒪(𝑘 log 𝑘)

𝑘

𝑘

𝑀

𝑁

J. Gu, Z. Zhao, C. Feng, M. Liu, R.T. Chen, D.Z. Pan, “Towards Area-Efficient Optical Neural 

Networks: An FFT-based Architecture,” ACM/IEEE ASP-DAC, 2020. Best Paper Award



Butterfly Photonic Mesh for Circulant MVM
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𝒘𝒊𝒋

∗

IFFT

ℱ(𝒘𝑖𝑗)

encoded in 𝚺

𝒘1 𝒘2 𝒘3 𝒘4

FFT

J. Gu, Z. Zhao, C. Feng, M. Liu, R.T. Chen, D.Z. Pan, “Towards Area-Efficient Optical Neural 

Networks: An FFT-based Architecture,” ACM/IEEE ASP-DAC, 2020. Best Paper Award

𝒙11 𝒙12 𝒙13 𝒙14𝒙𝒋

FFT

𝑽∗′ 𝚺 𝑼′

···

···

···

−90o −90o

Recursively cascade this 

2 × 2 building block

1

2

1 1
1 −1

=
1 0
0 −𝑗

×
1

2

1 𝑗
𝑗 1

×
1 0
0 −𝑗

0o

0o

0o

0o

0o

0o

0o

-90o

0o

0o

0o

0o

0o

0o

0o

90o



Photonic Neural Chip Tapeout & Demonstration

34

Microcontroller

DACs ADCs

4×4 butterfly photonic tensor core

2.5 mm × 5.6 mm

C. Feng*, J. Gu* (co-first), H. Zhu, Z. Ying, Z. Zhao, D.Z. Pan, R.T. Chen, “A compact butterfly-style silicon photonic-

electronic neural chip for hardware-efficient deep learning”, ACS Photonics, Nov. 30, 2022.

Electronic-photonic computing platform

Design

Layout

Simulation

Tape-out by foundry

Testing

Model Training

Evaluation on ML Tasks

Dev. Flow



Evaluate on ML Tasks & Efficiency
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>94% accuracy

2-layer CNN (1.6k #params)

MNIST

3-bit weight resolution

Fixed butterfly transform

*Reference accuracy 85.6%

ResNet-20 CIFAR-10 

ReRAM Crossbar 4-bit weight (GEMM)

[Wan et al., Nature, Aug. 2022]

horse

>85% accuracy

ResNet-20 (0.27M #param) 

CIFAR-10

3-bit weight resolution

Fixed butterfly transform

96.5% accuracy

VGG8 (4M #params) 

COVID Chest X-ray

3-bit weight resolution

Fixed butterfly transform

0.0

0.2

0.4

0.6

0.8

1.0

P
re

d
ic

te
d
 P

ro
b
a
b
ili

ty

COVID Normal
Other Viral 
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Classes

225 TOPS/mm2

2-4× smaller area & 5-13× less optical 

delay than MZI-ONN [Nat. Photon.’17]
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𝑎

200-400 um

~10 um

𝜱 𝜱



Incoherent ONN Architectures
oEncoding: |𝑥|

oComputing: Multi-wavelength modulation + photodetection

oMicroring resonator (MRR) weight bank

o𝑦 = 𝑤1𝑥1 +𝑤2𝑥2 +𝑤3𝑥3 +⋯+𝑤𝑛𝑥𝑛
oAll-pass MRR weight bank

o𝑤𝑖 = 𝑎𝑖 ∈ [0, 1]

oAdd-drop MRR weight bank

o𝑤𝑖 = 𝑎𝑖 − 1 − 𝑎𝑖 = 2𝑎𝑖 − 1 ∈ [−1, 1]

oCompact in size

oCan we do it better?

oBottleneck by 1 Op/device

38

Add-drop MRR weight bank

All-pass MRR weight bank



oMulti-operand optical neuron (MOON): 

oSingle-device to implement vector-vector multiplications (beyond 1 OP/device)

oBuilt-in non-linear transfer function 𝑇(⋅):

oWeight (𝑤) and input (𝑥) encoding:

𝑦𝑖 = 𝑇 𝛴𝑗 𝜙𝑗 𝑉𝑗

𝑉𝑗 = 𝑤𝑗 ∙ 𝑥𝑗 or 𝜙𝑗 = 𝑤𝑗 ∙ 𝑥𝑗 …

(a) Multi-operand microring

(b) Multi-operand MZI
Fixed weight Programmable weight

𝜙𝑖,1 𝜙𝑖,2 𝜙𝑖,𝑘…

𝜙𝑖,1

…

𝜙𝑖,2

𝜙𝑖,3𝜙𝑖,𝑘
𝑦𝑖

𝑦𝑖

Customized Incoherent ONN Architectures

Map product

39

𝒌 × higher compute density 

at the same cost



(MOON) Multi-Operand Ring Resonators
oMORR: 𝒌-segment controllers on one micro-ring

oSingle-device length-𝑘 vector dot-product

Round-trip phase: 𝜙 ∝ ∑𝑖=0
𝑘−1𝑤𝑖𝑥𝑖

2

oBuilt-in nonlinearity

oHalf-Tanh-like nonlinear activation 𝑓 ⋅ ∈ (0, 1)

oTunable smoothness (𝑟, 𝑎)

𝑓 𝜙 =
𝑟−𝑎 𝑒−𝑗𝜙

1−𝑟𝑎 𝑒−𝑗𝜙

2

𝑂𝑈𝑇 = 𝑓 𝜙 ⋅ 𝑖𝑛 ∝ 𝑓 ∑𝑖=0
𝑘−1𝑤𝑖𝑥𝑖

2 ⋅ 𝐼𝑁

40

w0 w1

w2wk-1...

x0 x1

x2xk-1

Input 
Port

Through 
Port

𝜙

𝑘-in-one



MORR-based ONN: SqueezeLight [Gu+, DATE’21, TCAD’22]

oMatMul + Nonlinearity in the MORR array

oDifferential rails support positive/negative neurons

oLearnable balancing factors ( ሚ𝑑0, ሚ𝑑1, ⋯ , ሚ𝑑𝑄
2
−1
)

oAdaptive MORR output range

oEnhanced expressivity

𝒙

𝒘−
× × ×
…

… …

… …

…

× ሚ𝑑0 × ሚ𝑑1 × ሚ𝑑𝑄/2−1

𝑦𝑚 = 

𝑞=0

𝑄/2−1

𝑂𝑈𝑇𝑚𝑞 − 

𝑞=𝑄/2−1

𝑄−1

𝑂𝑈𝑇𝑚𝑞
ሚ𝑑𝑞

𝒙

𝒘+
× × ×
…

… …

… …

…

𝒚 = 𝒙𝑻𝒘+ − 𝒙𝑻𝒘−𝒚 = 𝒙𝑻𝒘+ − 𝒙𝑻𝒘−𝒚 = 𝒙𝑻𝒘+ − 𝒙𝑻𝒘−

41



Cross-layer Scalability Evaluation
oCompare with SoTA MRR-ONNs on MNIST, FMNIST, CIFAR-10

o23×-32× less device usage

o8× fewer wavelength usage

oMORR array vs MRR array
o w/ same area budget

o 5.3× higher TOPS/mm2

o 9.8× higher TOPS/W

o 63.5% system energy reduction

oGood expressivity & training scalability

oRobust to crosstalk/noises with special robustness optimization

42
MRR-ONN-1 [Liu+, DATE’2019]

MRR-ONN-2 [Tait+, SciRep 2017]
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32×

Comparison on Acc, #Device, # 𝝀, #Params



oPartition MZI controllers into 𝑘 segments

oDot-product + nonlinearity: 𝑦 = cos(∑𝑖𝑤𝑖𝑥𝑖)

oScale up to larger vectors with WDM

oFewer cascaded device → lower insertion loss and delay

oSame power/area as a single MZI

MOONs

MOONs

MOONs

...

DACs for X and W

Memory

y1

y2

ym

...

MOON #1 MOON #2 ... MOON #n*

yq

λ2 λn*

MZI-based MOON

…
𝜙𝑖,1 𝜙𝑖,2 𝜙𝑖,𝑘

Multiplexer

λ1

PhotodetectorPhase shifter

# of operands 𝑘 depends on controlling/fabrication precision and chip layout: 4/8/16/…

Circuit architecture

[Feng C. et al., under submission]

𝑛∗ =
𝑛

𝑘

(MOON) Multi-Operand MZI

43



4-operand MZI

𝑦

𝑦 =
Iin
2
Σ𝑖 cos(Σ𝑤𝑖𝑥𝑖 + 𝜙𝑏)

𝜙𝑏 ≅
𝜋

2

𝜙𝑏

MOMZI Chip Layout (4-op MOMZI)

[Feng C. et al., under submission] 44

Biased in the middle

Full-range output



Evaluation Results
oRobust output with small noises (~0.5%)

o~86% measured acc on 4-layer CNN SVHN 

o4-bit voltage control precision
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o>100 dB smaller insertion loss and 7.2× smaller footprint

𝑦0

𝑦1

𝑦2

𝑦3

Σ𝑤0,𝑖𝑥𝑖

Σ𝑤1,𝑖𝑥𝑖

Σ𝑤2,𝑖𝑥𝑖

Σ𝑤3,𝑖𝑥𝑖

𝑦0

𝑦1

𝑦2

𝑦3

Results based on AIM photonics PDK, For MZI-ONN, we use thermo-optical MZI switch for weight programming

∝ 2𝑛 + 1 𝐼𝐿𝑀𝑍𝐼

≈ 𝐼𝐿𝑀𝑂𝑂𝑁 + 𝐼𝐿𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑟

4 × 4 MOMZI-ONN

4 × 4 MZI-ONN with 16 MZIs ([Shen+, 2017])

(a) Propagation loss comparison (b) Footprint comparison

Performance Analysis
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Open-Source Photonic AI: TorchONN

47

ONN Architecture:   FFT-ONN

On-Chip Learning:   L2ight

Automated PIC Design: ADEPT

Robust ONN Training: ROQ

FFT-ONN

SqueezeLight

O2NN

FFT-ONN-v2

FFTON 
Tape-out

MORR Tape-out

SqueezeLight-v2

Gen-1
Standard Device  

Customized Circuit
Noise-aware Train

Gen-2
Support More 
Applications

(Dynamic MatMul; On-
chip Train…)

Gen-3
Customized Devices

Efficient Architecture

Mem-Eff ONN

Gen-4
AI-based Automated 

ONN Design

Auto-ONN

On-chip Train

ROQ

Optics for AI 

AI for Optics

NeurOLight



Photonic AI Library TorchONN

48

oConstruction: customized optical Conv/Linear layers
o Modeling of various devices

o PCM, MZI, MRR, MORR, …

o Support various tensor core designs
o MRR weight bank / MORR / MZI / FFT array…

o CUDA backend for customized operators…

oMapping: convert from electrical to optical
o Decomposition or optimization-based map

oCo-design infrastructure
o Device quantization & QAT

o Noise injection & NAT

o Circuit pruning & PAT

o On-chip training support
o Zeroth-order optimization

o Circuit topology search (SuperMesh)



Tutorial II: 
LightRidge: An End-to-end Agile 

Design Framework for Diffractive 
Optical Neural Networks

Yingjie Li, Ruiyang Chen, Minhan Lou, Berardi Sensale-
Rodriguez, Weilu Gao, Cunxi Yu

University of Utah



New Trends of Computing

▸ AI’s impacts in hardware system design
– The raise of domain-specific computing

– Beaten the trend of Moore’s Law (R.I.P Dr. Moore)

• Doubling every 3.5 months (18 months)

4
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Slide courtesy of Albert Reuther, MIT Lincoln Laboratory Supercomputing Center

Computation Precision

Chip

Card

System

Form Factor

Inference

Training

Computation Type

Legend

Int8

Int8 -> Int16

Float16

Float16 -> Float32

Float32

Float64

Int1

Int2

Int12 -> Int16

Int16

Int32

1 TeraOps/W

10 TeraOps/W

100 G
igaOps/W

DGX-1

MIT Eyeriss

MovidiusX

JetsonTX1
JetsonTX2

Xavier

DGX-Station

DGX-2

WaveSystem

WaveDPU

TrueNorthSys

GraphCoreNode

GraphCoreC2

K80

P100

V100

2xSkyLakeSP

Phi7210F

Phi7290F

Arria GX1150

Nervana
Goya

TPU3

TPU1

TPU2

Turing

TPUEdge

TrueNorth

Zynq-020

ArriaGX1155

Zynq-020

XilinxCluster

ZCU102

AIStorm

Cambricon

Cambricon

Baidu

Rockchip

DianNao

DaDianNao

ShiDianNao

PuDianNao

Zynq-020

S835

A12
Mali

-76
Mali-75

S845
Stratix-V

ArriaGX1150
ArriaGX1150

Nervana2

Zynq-060

ArriaGX1150

ArriaGX1150

AMD-MI6

AMD-MI60

Very Low Power

Cell 

GPUs

Mobile

FPGAs

Data Center 

Systems

Data Center 

Chips & 

Cards

Fig. 2. Performance vs. power scatter plot of publicly announced AI accelerators and processors.

the DianNao for larger NN model inference. The ShiD-

ianNao hShiDianNaoi [23] is designed specifically for

convolutional neural network inference. Finally, the Pu-

DianNao hPuDianNaoi [24] is designed for seven repre-

sentative machine learning techniques: k-means, k-NN,

näıve Bayes, support vector machines, linear regression,

classification tree, and deep neural networks.

• San Jose startup AIStorm hAIStormi [25] claims to do

some of the math of inference up at the sensor in the

analog domain. They originally came to the embedded

space scene with biometric sensors and processing. They

call their chip an AI-on-Sensor capability.

• The Rockchip RK3399Pro hRockchipi [26] is an im-

age and neural co-processor from Chinese company

Rockchip. They published raw performance numbers for

8bit inference. This appears to be a GPU-based co-

processor but details are few.

B. Cell / Smartphone GPU-based Neural Engines

A number of smartphone vendors are embedding GPU-

based neural engines in their smartphones to enable object

detection, face recognition, and other inference-based tasks.

The performance metrics for five inference neural engines,

which were benchmarked with AImark, are included in this

survey. AImark runs VGG-16, ResNet34 and InceptionV3 on

smartphones, and it is available in the Apple App Store and

the Google Play Store. It is reasonably safe to assume that

these GPU-based vector processors are executing with Int8

precision.

• The Apple A12 processor hA12i [27], [28] in the iPhone

Xs tops out this set. This A12 neural engine bursts its

power utilization to 5.5W for short time periods (above its

usually 5W maximum for battery life) for fast inference

runs, and this performance point ison theVGG-16 model.

• The Huawei Kirin 980 (with AMD Mali-76 GPU IP)

hMali-76i [29] and Kirin 970 (with AMD Mali-75 GPU

IP) hMali-75i [30] make their performance mark with the

ResNet34 and VGG-16 models, respectively.

• Finally, the Qualcomm Snapdragon 835 hS835i and 845

hS845i [29] are also on the chart with performance

numbers using the ResNet34 and InceptionV3 models,

respectively.

C. Embedded Chips and Systems

The systems in this category are aimed at automotive

AI/ML, autonomous vehicles, UAVs, robots, etc. They all have

several ARM cores that are mated with NVIDIA CUDA GPU

cores.

• The NVIDIA Jetson-TX1 hJetsonTX1i [31] incorporates

4 ARM cores and 256 CUDA Maxwell cores. It is

aimed at low power applications for inference only. The

performance was achieved with GoogLeNet with a batch

size of 128.

• The Jetson-TX2 hJetsonTX2i [31] mates 6 ARM cores

with 256 CUDA Pascal cores. It also is aimed at low

power applications for inference only. The performance

was achieved with GoogLeNet with a batch size of 128.

• The NVIDIA Xavier hXavieri [32] deploys 8 ARM cores

with 512 CUDA Volta cores and 64 Tensor cores. It is

aimed also at low power applications for inference only.

D. FPGA Co-processors

In public literature, the use of FPGAs for neural net-

works has been primarily in the technical research domain.

Optical AI System

Reuther, A., Michaleas, P., Jones, M., Gadepally, V., Samsi, S., & Kepner, J. Survey and benchmarking of machine learning accelerators. HPEC 2019



Challenges in Optical AI System Design 

o A Computer Engineering journey to Optical AI System

o Challenge 1: Cross-disciplinary domain knowledge barriers

Optics

High Performance

Programming

ML Algorithms & Neural Nets

HW-SW Co-design

Input Image Diffractive Layer1 Diffractive Layer2 Diffractive Layer3 Camera

Compiler Algorithms



Challenges in Optical AI System Design 

o A Computer Engineering journey to Optical AI System

o Challenge 1: Cross-disciplinary domain knowledge barriers

o Challenge 2: Lacks high-performance infrastructures for programming, modeling, 

training, exploration, fabrication, etc.

HLS-C/RTL & Compile PyTorch/TF Optical Neural Networks

?

Data

Preparation

NNs

Modeling
Optimizations

on DFGs

Deployment

On HW



Challenges in Optical AI System Design 

o A Computer Engineering journey to Optical AI System

o Challenge 1: Cross-disciplinary domain knowledge barriers

o Challenge 2: Lacks high-performance infrastructures for programming, modeling, 

training, exploration, fabrication, etc.

o Challenge 3: Limited studies of physics-to-system co-design to enable seamless

design-to-deployment

0
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Numerical Emulation Physical Measurement



Challenges in Optical AI System Design 

o A Computer Engineering journey to Diffractive Optical Neural Networks

o Challenge 1: Cross-disciplinary domain knowledge barriers

o Challenge 2: Lacks high-performance infrastructures for programming, modeling, 

training, exploration, fabrication, etc.

o Challenge 3: Limited studies of physics-to-system co-design to enable seamless

design-to-deployment

Programming 

Infrastructure

End-to-end  

Co-design

Domain-specific 

Algorithms

LightRidge Design Flow



Conventional NNs Diffractive NNs

Input Images (Real) Light (Complex)

Operator Conv, Dense, Pool, … Light Diffraction and Phase Mod

Propagation Digital Computing Light Propagation (Complex)

Output Digital Output (Real) Light Intensity (CPLEX-2-Real)

Background: Diffractive Neural Networks

𝜃0(𝑥, 𝑦)
𝜃1(𝑥, 𝑦)

𝜃2(𝑥, 𝑦)

Lin, Xing, et al. "All-optical machine learning using diffractive deep 

neural networks." Science 361.6406 (2018): 1004-1008.

High
Intensity



e.g., Fresnel approximation: 

𝒉 𝒙, 𝒚, 𝒛 =
𝐞𝐱𝐩(𝒊𝒌𝒛)

𝒊𝝀𝒛
𝐞𝐱𝐩{

𝒊𝒌

𝟐𝒛
(𝒙𝟐 + 𝒚𝟐)}

Free-space Diffraction

Distance z

Background: Diffractive Neural Networks

DiffMod (𝑿𝒄 𝒙, 𝒚 , 𝜽𝟎) = 𝐢𝟊𝐅𝐓𝟐𝐃 𝟊𝐅𝐓𝟐𝐃 𝐗𝐜 𝐱, 𝐲 × 𝟊𝐅𝐓𝟐𝐃 𝐡 𝐱, 𝐲, 𝐳

Light Diffraction

𝜃0(𝑥, 𝑦)
𝜃1(𝑥, 𝑦)

𝜃2(𝑥, 𝑦)

①

①Lin, Xing, et al. "All-optical machine learning using diffractive deep 

neural networks." Science 361.6406 (2018): 1004-1008.

532 nm

𝒊 = −𝟏, 𝒌 =
𝟐𝝅

𝝀



Free-space Diffraction

Distance z

Background: Diffractive Neural Networks

DiffMod (𝑿𝒄 𝒙, 𝒚 , 𝜽𝟎) = Light Diffraction × ( cos 𝜽𝟎 𝒙, 𝒚 + 𝒊 ∙ sin 𝜽𝟎 𝒙, 𝒚 )

𝜽 Trainable 
parameters Phase modulation

Phase modulation

𝜃0(𝑥, 𝑦)
𝜃1(𝑥, 𝑦)

𝜃2(𝑥, 𝑦)

①

②

②

Lin, Xing, et al. "All-optical machine learning using diffractive deep 

neural networks." Science 361.6406 (2018): 1004-1008.

532 nm

Complex MatMul

𝒊 = −𝟏, 𝒌 =
𝟐𝝅

𝝀

e.g., Fresnel approximation: 

𝒉 𝒙, 𝒚, 𝒛 =
𝐞𝐱𝐩(𝒊𝒌𝒛)

𝒊𝝀𝒛
𝐞𝐱𝐩{

𝒊𝒌

𝟐𝒛
(𝒙𝟐 + 𝒚𝟐)}



For example, 3-layer forward function:

𝐈 𝐗𝐜, 𝜽 =DiffMod ( DiffMod ( DiffMod (𝑿𝒄 𝒙, 𝒚 , 𝜽𝟎), 𝜽𝟏 ), 𝜽𝟐 )

• Computed iteratively for all 
stacked diffractive layers

• Trainable parameters 
𝜽={𝜽𝟎, 𝜽𝟏, 𝜽𝟐}

𝜽𝟎 𝜽𝟏 𝜽𝟐

𝒛 𝒛 𝒛

𝐗𝐂 = 𝑨 + 𝒊 ∙ 𝑩

𝐈(𝐗𝐂) = 𝑨𝟐 + 𝑩𝟐

Background: Diffractive Neural Networks



Network Container

Physics Kernels

Training Modules

Runtime

Modularization

Differentiation

LightRidge IR

Laser and Input Encoding

Optical Neural Operation

Detector and Output

Implementation Optimization

Co-design

Fidelity

Yingjie Li, Ruiyang Chen, Minhan Lou, Berardi Sensale-Rodriguez, Weilu Gao and Cunxi Yu. “LightRidge: An Open-source Compiler Framework for 

Diffractive Optical ML Architectures.” Workshop on Open-Source Computer Architecture Research (OSCAR) held in conjunction with ISCA (ISCA’49)

Overview of LightRidge Framework



Initialization
import lightridge as lr
lr.utils.data2cplex(DataLoader)
lr.init(DataLoader, wl, z)

Design Flow Compiler Code Blocks Physical System

Model Definition

# laser-specific definition
lr.laser(GaussBeam, wl, power)
# forward definition of DONNs
lr.model.sequential(

lr.layers.DiffractLayer(‘Fresnel’,…),
lr.layers.DiffractLayer(‘Fresnel’,…),
...
lr.detector(dprofile, regions), ) 0
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Training

lr.train(model, optimizer, loss,…)
lr.to(model, [‘cuda:0’, ‘cuda:1’])
# spatial and integrated DSE
lr.dse(lprofile, wl, size, DataLoader)

# e.g, SLM Sys
model.to_device(amp_func, phase_func, …)
# e.g., 3D Print THz Sys
model.to_3d_render(index_dict, …)

Deployment

Overview of LightRidge Framework



class DiffractiveLayer(torch.nn.Module):
""" Implementation of diffractive layer via co-design.
Args:

- phase_func/intensity_fun: Callable device's phase/intensity response
- wavelength: Float representing the wavelength of the laser source
- pixel_size: Float representing the size of each pixel in the diffractive layer
- resolution: Integer representing number of pixels
- distance: Float representing the propagation distance between layers
- amplitude_factor: Float the scaling factor in complex regularization  
- mesh_size: Integer specifying the mesh size used for diffraction approximation
- name: String representing the name of the diffractive layer
- approx: Callable for approximation method (default: lr.kernel.Fresnel)

- (Options: lr.kernel.Frauhofer, lr.kernel.Sommerfeld, lr.kernel.verify)
- phase_mod: Boolean indicating phase modulation on or off (default: True)

Shape:
- Input: :math:`(*)`. Input can be of any shape
- Output: :math:`(*)`. Output is of the same shape as input
"""

def __init__(self, phase_func, intensity_func, wavelength, 
pixel_size, resolution, distance, amplitude_factor,

name, approx=lr.kernel.Fresnel, phase_mod=True):
super(DiffractiveLayer, self).__init__()

LightRidge API Example: DiffractiveLayer()



Input Image Diffractive Layer1 Diffractive Layer2 Diffractive Layer3 Camera

o Example hardware-specific DONNs modeling

o w.r.t 532 nm setups (z =11 inches) and LC 2012 SLMs (HOLOEYE)

self.layers[1] = lr.layer.DiffractiveLayer(SLM1_phase, SLM1_amp,
wavelength=5.32e-7,  pixel_size=3.6e-5,  resolution=100, distance=0.2794, 
amplitude_factor=5, name=‘Diffractive_Layer1’)

…
# a virtual layer for diffraction (w/o phase mod) before detector
self.layers[4] = lr.layer.DiffractiveLayer(self, …, name=‘Last_Diffraction’ 
, … phase_mod = False)

# forward example of chain topology of DONNs
def forward(self, x):  

for index, layer in enumerate(self.layers):
x = layer(x) 

output = self.detector(x) 

LightRidge API Example: Forward Function 



Diffraction intensity pattern captured
Pre-defined 
detector region

Ground truth label t

Loss function ℒ

[0.7, 0.05, …,  0.03, 0.1 ]

[   1 ,   0   , …,   0  ,   0  ]

Normalized Light intensity

argmax = 0

▸ Training via Backprop works!
– Fully tensorized and differentiable 

physics kernels (Autograd) 

– Customizable loss w.r.t applications

• e.g., classification, segmentation, etc.

Training – Example of Classification 



Miscorrelation in Experimental Measurements

Input Image Diffractive Layer1 Diffractive Layer2 Diffractive Layer3 Camera

LightRidge

▸ Issues from design to deployment

– Coupled amp/phase response

– Unique behaviors for each SLM

– Varies from device-to-device, 

wavelengths, environment, etc.

98% accuracy 0
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lr.model.prop_view()



Co-design Formulation

𝑨(𝒙, 𝒚) 𝐜𝐨𝐬 𝜽(𝒙, 𝒚) + 𝒊𝑨 𝒙, 𝒚 𝐬𝐢𝐧𝜽(𝒙, 𝒚)

Amp

Phase

oThe formal view of co-design challenges

oMost challenging scenarios

o Coupled or not coupled response (phase only)

o Individual response for different layer or every pixel

𝟏 ∙ 𝐜𝐨𝐬 𝜽(𝒙, 𝒚) + 𝒊 ∙ 𝟏 ∙ 𝐬𝐢𝐧 𝜽(𝒙, 𝒚)

A = 0.9, 𝜃 = 0.3𝜋 (0.94)

𝑎0

𝑋𝐶(x,y)

Phase modulation



oDiscrete “trainable” parameters

oDiscrete parameters directly selects voltage index

o Loss function remains unchanged

Co-design Formulation

Amp Phase

Amp

Phase

𝒂𝟏 𝐜𝐨𝐬𝒑𝟏 + 𝒊𝒂𝟏 𝐬𝐢𝐧𝒑𝟏

Non-differentiable !

𝑋𝐶(x,y)



Gumbel-Softmax

oGumbel-Softmax (GS) for physics-aware discrete training

o A differentiable approximation to sampling discrete data

o Straight-through GS (STGS) for differentiable discrete sampling

o Discretize GS sample back with argmax in the forward pass

o GS sample in the backward pass to approximate the gradients

…

…

Class probability 

𝝅𝒊

i.i.d sample from 

Gumbel(0, 1) 

𝒈𝒊

z = onehot(𝒂𝒓𝒈𝒎𝒂𝒙𝒊[𝒈𝒊 + 𝐥𝐨𝐠𝝅𝒊 ])

𝒚𝒊 =
𝐞𝐱𝐩((𝐥𝐨𝐠 𝝅𝒊 + 𝒈𝒊)/𝝉)

∑𝒊=𝟏
𝒌 𝐞𝐱𝐩 𝐥𝐨𝐠(𝝅𝒊 + 𝒈𝒊 /𝝉)

Differentiable 

approximation 

via Softmax

∇𝜋𝑧 ≈ ∇𝜋𝑦

0 0.5 1

Jang, Eric, Shixiang Gu, and Ben Poole. "Categorical Reparameterization with Gumbel-Softmax." ICLR (2017).



oRefine the formulation via Gumbel-Softmax

Co-design Formulation

Amp Phase

𝑋𝐶(𝑥,𝑦)

Amp

Phase

𝒂𝟏 𝐜𝐨𝐬𝒑𝟏 + 𝒊𝒂𝟏 𝐬𝐢𝐧𝒑𝟏

Gradient Approximated   

Trainable
Gumbel ~ g(0,1)

Index for deployment

A list of measurements is all you need !!



Domain-specific Complex Regularization

Amp Phase

Gradient Approximated   

𝑋𝐶(𝑥,𝑦)

Amp

Phase

𝒂𝟏 𝐜𝐨𝐬𝒑𝟏 + 𝒊𝒂𝟏 𝐬𝐢𝐧𝒑𝟏

Trainable

oDiscrete training via Gumbel-Softmax

Gumbel ~ g(0,1)

Index for deployment

𝜼 ∙

Physics-aware Complex 

Regularizer



oRegularization is a new hyperparameter

oVaries for different wavelength, depth, and distance

o Tuning needs to combine Gumbel-Softmax temperature 
schedule

Domain-specific Complex Regularization

Li, Yingjie, Ruiyang Chen, Weilu Gao, and Cunxi Yu. "Physics-aware Differentiable Discrete Codesign for Diffractive Optical 

Neural Networks." In Proceedings of the 41st IEEE/ACM International Conference on Computer-Aided Design (ICCAD’22). 2022



Comparisons with quantization methods

oComparisons trained with a fitted continuous curve 
from a multi-polynomial regression model 

Post-training 

quantization 

(PTQ)

Quantization-aware 

training (QAT)

Weights sharing 

quantization 

(WSQ)

Pre-trained 

model (float32)
✗ ✗ ✓

Quantization 

method

Round after 

training

Hardware-aware 

training loss with 

minibatch clipping

Weights sharing 

with KMeans

clustering



Comparisons with quantization methods

# file.csv includes amplitude/phase response in two rows

SLM1_amp, SLM1_phase, … = lr.utils.load_device([slm1.csv, slm2.csv,])

# plug-in in the layer definition

lr.layer.DiffractiveLayer(SLM1_phase, SLM1_amp, wavelength, …)

lr.layer.DiffractiveLayer(SLM2_phase, SLM2_amp, wavelength, …)

0.22 0.21

0.35

0.48

0.66
0.7

0.49
0.54

0.46

0.7

0.48
0.45

0.98 0.98

0.89 0.89

0.15

0.35

0.55

0.75

0.95

MNIST-10 (Setup1) FashionMNIST (Setup2) MNIST-10 (Setup2) FashionMNIST (Setup2)

PTQ QAT WSQ Ours (GS)

Li, Yingjie, Ruiyang Chen, Weilu Gao, and Cunxi Yu. "Physics-aware Differentiable Discrete Codesign for Diffractive Optical 

Neural Networks." In Proceedings of the 41st IEEE/ACM International Conference on Computer-Aided Design (ICCAD’22). 2022



Experiments – Visible Range 

▸ Training and hardware setups

– 10 min training on RTX 3090 Ti and straight out-of-box deployment

– 98% accuracy in experimental evaluation on MNIST-10

• Match LightRidge emulation results

Li, Yingjie, Ruiyang Chen, Weilu Gao, and Cunxi Yu. "Physics-aware Differentiable Discrete Codesign for Diffractive Optical 

Neural Networks." In Proceedings of the 41st IEEE/ACM International Conference on Computer-Aided Design (ICCAD’22). 2022



Experimental Energy Efficiency 

APC Metered Rack Supply PDU

(CPU/GPU/DONNs measurement)
Google Edge TPU Setup

3.3
2.4

1.5

23

3.8

1.7 2

26

995

1

10

100

1000

2080 Ti 3090 Ti Intel Xeon Edge TPU

(XPU)

Ours

Efficiency (FPS/Watt)

MLPs CNNs DONNs

▸ FPS/Watt at inference

– Batch = 1

– 3 orders vs GPPs

– 50X vs XPU

– CNNs/MLPs acc = 0.99

– DONNs = 0.98

▸ Can be further optimized with 

monolithic fabrication and 

advance setups



Experiments – THz Range

▸ THz hardware setups
– Laser source 0.3 THz

– 3D printed diffractive layers

• Pixel dimension 0.5 mm

– 93% accuracy in MNIST-10

– Physical sparsity

Layer 1

Layer 2

Lou, Minhan, Yingjie Li, Cunxi Yu, Berardi Sensale-Rodriguez, and Weilu Gao. "Effects of interlayer reflection and interpixel 

interaction in diffractive optical neural networks." Optics Letters 48, no. 2 (2023): 219-222.

Yingjie Li*, Shanglin Zhou*, Minhan Lou, Weilu Gao, Caiwen Ding, Cunxi Yu. “Physics-aware Roughness Optimization for 

Diffractive Optical Neural Networks“. Design Automation Conference (DAC'23) 



LightRidge Runtime Speedups

▸ LightRidge offers orders of magnitude speedups

– Baseline: LightPipes(2021) and SOTAs [Science’18, Nature Photonics’21]

• SOTAs reported 3-4 days training time for 5-layer DONNs

▸ Speedups breakdown

– DiffractMod are the 

most critical

– Deployment of 

cuFFTC2C and cache 

planning on h



Advanced Architecture – All-Optical Segmentation 

(T2.2.2) Real-time Multi-

task Image Classification

Diffractive Layer 

Beam Splitter

Order/sequence of 

incoming tasks can be 

recognized automatically
in real-time at Detector

(a)

(b)

(a)

(b)

Localization of objective 

and objective classification

generation simultaneously(T2.2.1) Real-time CV 

Objective Detection

Lowest energy area as class indication (Task 1)

Highest energy area as class indication (Task 2)

(a)

(b)

(c)

(d)

T3.2T3.1

Real-time classification 

w auto task recognition

Classification

Localization/

Segmentation

Multi-task Diffractive Layers 

Input image Output [9, 18] Our preliminary results  

Optical Skip Connection

LayerNorm (training only)Reflection MirrorInput Image Output Image (Detector)

532nm Camera

for i in range(6)
self.layers[i] = lr.layer.DiffractiveLayer()

self.layers[5].phase_mode = False

# optical ‘skip connection’
def forward(self, x):

x0 = self.layers[0](x)
x1 = self.layers[1](x0)
x2 = self.layers[2](x1)
x3 = self.layers[3](x2)
# the skip 
x4 = self.layers[4](x3) + x0
x  = self.layers[5](x4)

ln = torch.nn.LayerNorm()
output = self.detector(ln(x))

▸ All-optical segmentation task
– CityScape dataset

– “Optical skips”

• Better gradient flow

– BCELoss

(T2.2.2) Real-time Multi-

task Image Classification

Diffractive Layer 

Beam Splitter

Order/sequence of 

incoming tasks can be 

recognized automatically
in real-time at Detector

(a)

(b)

(a)

(b)

Localization of objective 

and objective classification

generation simultaneously(T2.2.1) Real-time CV 

Objective Detection

Lowest energy area as class indication (Task 1)

Highest  energy area as class indication (Task 2)

(a)

(b)

(c)

(d)

T3.2T3.1

Real-time classification 

w auto task recognition

Classification

Localization/

Segmentation

Multi-task Diffractive Layers 

Input image Output [9, 18] Our preliminary results  

Input Image Target Our results Baseline



Advanced Architecture – All-Optical Segmentation 

▸ Preliminary of all-optical autonomous driving

– In-door lane following

– Same architecture as segmentation task

Input Label DONNs



Advanced Architecture – All-Optical Segmentation 

▸ Preliminary of all-optical autonomous driving

– Out-door autonomous driving

• University campus road (summer)

– Same architecture as segmentation task



Adversaries of Light 

▸ The space of the adversaries in DONNs

Input Image
Diffractive 

Layer2
Diffractive 

Layer1
Diffractive 

Layer3
Image X

Adversarial X’ = X + �

ℒ(X,t) = ||LogSoftmax(I(X,� )) - t||2

� = sign(
ℒ
)

Yingjie Li, and Cunxi Yu. "Physical Adversarial Attacks of Diffractive Deep Neural Networks." Design Automation Conference (DAC’21) 

Attack Types HW System Numerical

Real Amplitude attack (𝐴 + 𝒑)𝑒𝑖𝜃 = (𝐴 + 𝒑) cos 𝜃 + 𝑖 ∙ (𝐴 + 𝒑)sin 𝜃

Complex Phase attack 𝐴𝑒𝑖(𝜃+𝒑) =𝐴 cos(𝜃 + 𝒑) + 𝑖 ∙ 𝐴sin(𝜃 + 𝒑)

Adversarial Perturbation 𝒑



Adversaries of Light 

▸ Domain-specific generation of adversarial examples

– Restricted space w.r.t physics meanings

– Perturbation engineering needs to be considered in the attack phase

▸ C-FGSM: Complex fast-gradient-signed-method

– Gumbel-Softmax guided co-design and perturbation engineering

Input Image
Diffractive 

Layer2
Diffractive 

Layer1
Diffractive 

Layer3
Image X

Adversarial X’ = X + �

ℒ(X,t) = ||LogSoftmax(I(X,� )) - t||2

� = sign(
ℒ
)

Li, Yingjie, and Cunxi Yu. "Physical Adversarial Attacks of Diffractive Deep Neural Networks." Design Automation Conference (DAC’21) 



Evaluations of C-FGSM  

Adversarial Original

‘7’ ‘1’

‘2’‘7’

0 1 2

3 4 5 6

7 8 9

‘Sneaker’‘Pullover’

3 4 5 6

7 8 9

0 1 2



o Vulnerability exist and experimentally demonstrated 

o Natural counter-measurements  - the miscorrelation and device noise

Physical Experimental Validation
Input Image Diffractive Layer1 Diffractive Layer2 Diffractive Layer3 Camera

Chen, Ruiyang*, Yingjie Li*, Minhan Lou, Jichao Fan, Yingheng Tang, Berardi Sensale‐Rodriguez, Cunxi Yu, and Weilu Gao. "Physics‐Aware Machine 

Learning and Adversarial Attack in Complex‐Valued Reconfigurable Diffractive All‐Optical Neural Network." Laser & Photonics Reviews (2022).



Other Features

ML-assisted DSE

Monolithic Integration

Advanced Architectures 

& Multi-task Learning

Yingjie Li, Ruiyang Chen, Minhan Lou, Berardi Sensale-Rodriguez, Weilu Gao and Cunxi Yu. “LightRidge: An End-to-end Agile Design 

Framework for Diffractive Optical Neural Networks.” ASPLOS’24



o A Computer Engineering journey to Diffractive Optical Neural Networks

[ICCAD’22]1

[Laser & Photonics Reviews’22]1

[DAC’21]
[OSCAR@ISCA’22] 
[ASPLOS’24]

[ICCAD’22]1

[DAC’23]

Adversaries
of Light

Architectures 
& Integration

Application-driven
Material/Device

[DAC’21]
[Laser & Photonics Reviews’22]1

[CLEO’22]1

[Scientific Report’21]
[IJCAI’23]

[Optics Letters’23]
[CLEO’22]2

[Laser & Photonics Reviews’22]2

Programming 
Infrastructure

Domain-specific 
Algorithms

End-to-end  
Co-design

LightRidge Design Flow

Conclusions

Physics Real-world System
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Tutorial III: Topology and 
physical layout optimization of
photonic networks-on-chip and 

PIC variation analysis
Ulf Schlichtmann,

Technical University of Munich



Topology and physical layout optimization of
photonic networks-on-chip



• Usage of microring resonators 
(MRRs) for multiplexing and 
demultiplexing

• Dedicated signal path determined 
in design phase for each tuple 
(initiator, target, wavelength) 

• Main constraint: No path overlap 
between signals with the same 
wavelength

89

180° direction change

90° direction change 270° direction change

light propagation

WRONoC – Wavelength-Routed ONoC
WRONoC Working Mechanism



WRONoC Pros and Cons

• Advantages: 
• No control resource
• No scheduling effort
• No congestion control
• No signal path construction → no 

uncertain signal delay 

• Disadvantages: 
• Extensive usage of MRRs (1 MRR 

serves constant #paths) →
Scalability issue! → suitable for 
application-specific usage →
need design optimization to save 
resources

90



WRONoC Design Features

Topological features:

• Waveguide connection structure

• MRR topological locations

• MRR resonant wavelengths

• Signal wavelength assignment

• Signal path routing

Physical design features:

• Waveguide routing

• MRR placement

91

• All these need to be done during the design phase
→ Challenges of efficiency! & beyond human capability!

Manual topology

Manual layout

Sources:
1) Engineering a Bandwidth-Scalable Optical Layer for a 3D Multi-core Processor with Awareness of Layout Constraints, NOCS’12, Luca Ramini et al.



WRONoC Research at TUM ― Since 2018

• Router design and synthesis:
• Topology synthesis

• CustomTopo (ICCAD’18)

• FAST (DATE’21, TCAD‘22)

• Topology design
• Light (ASP-DAC’21)

• Physical synthesis
• ToPro (ICCAD’21)

• Topology synthesis + physical synthesis
• PSION (ISPD’19, TCAD’20, ICCAD’20)

• Bandwidth maximization: MaxBW (ASP-DAC’20)
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WRONoC Research at TUM

• Router design and synthesis:
• Topology synthesis

• CustomTopo (ICCAD’18)

• FAST (DATE’21, TCAD‘22)

• Topology design
• Light (ASP-DAC’21)

• Physical synthesis
• ToPro (ICCAD’21)

• Topology synthesis + physical synthesis
• PSION (ISPD’19, TCAD’20, ICCAD’20)

• Bandwidth maximization: MaxBW (ASP-DAC’20)
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Separate Design Steps

• Topology generation and then physical 
design

• Advantages: 
• Natural problem partitioning

• Observable intermediate solution, i.e. 
topology

• Fast

• Disadvantages: 
• Node position not considered → long 

waveguide detours and crossings

94

automatically-synthesized topology

automatically-synthesized layout
Sources:
1) CustomTopo: A Topology Generation Method for Application-Specific Wavelength-Routed Optical NoCs, ICCAD’18, Mengchu Li et al.



Topology Synthesis by CustomTopo
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Sources:
1) CustomTopo: A Topology Generation Method for Application-Specific Wavelength-Routed Optical NoCs, ICCAD’18, Mengchu Li et al.

Input: communication graph

communication matrix

wavelength for each message determined
wavelength for each ADF determined
#ADF-sharing structures maximized



Information in the Communication Matrix
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H4

H3H2H1

M1 ADF2 ADF3ADF1

H4

H3

M1 ADF3

M2

Dashed lines: components may not be directly connected

ADF sharing

Add-drop filter (ADF) 
with 2 MRRs

Sources:
1) CustomTopo: A Topology Generation Method for Application-Specific Wavelength-Routed Optical NoCs, ICCAD’18, Mengchu Li et al.



Topology Synthesis by CustomTopo

97

Sources:
1) CustomTopo: A Topology Generation Method for Application-Specific Wavelength-Routed Optical NoCs, ICCAD’18, Mengchu Li et al.
2) PROTON+: A Placement and Routing Tool for 3D Optical Networks-on-Chip with a Single Optical Layer, JETC’15, Anja von Beuningen et al.

Input: communication graph

communication matrix

wavelength for each message determined
wavelength for each ADF determined
#ADF-sharing structures maximized

netlist determined

topology

physical design (by PROTON)



Topology Synthesis by FAST

• Reduced from Snake topology

98

Sources:
1) Contrasting Wavelength-Routed Optical NoC Topologies for Power-Efficient 3D-stacked Multicore Processors using Physical-Layer Analysis, DATE’13, Luca Ramini et al.
2) FAST: A Fast Automatic Sweeping Topology Customization Method for Application-Specific Wavelength-Routed Optical NoCs, DATE’21, Moyuan Xiao et al.
3) Crosstalk-Aware Automatic Topology Customization and Optimization for Wavelength-Routed Optical NoCs, IEEE TCAD‘22, Moyuan Xiao et al.

Comm. Graph Comm. Matrix

1 X

1 X 2

1 X

X 2

1 X

1 X 2

1 X

X 2

Entry Revision

Folding Resulting Topology

4×4 Snake

Wavelength Assignment

Results comparable with 
CustomTopo, but much faster



WRONoC Research at TUM

• Router design and synthesis:
• Topology synthesis

• CustomTopo (ICCAD’18)

• FAST (DATE’21, TCAD‘22)

• Topology design
• Light (ASP-DAC’21)

• Physical synthesis
• ToPro (ICCAD’21)

• Topology synthesis + physical synthesis
• PSION (ISPD’19, TCAD’20, ICCAD’20)

• Bandwidth maximization: MaxBW (ASP-DAC’20)
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Light: 𝑛 × (𝑛 − 1) WRONoC Router 

• Physical-design-aware 

• A wide range of signal-to-noise ratio 
(SNR) distribution ― good potential
for signal path binding

100

4×4 λ-router 4×3 Light

8×8 λ-router 8×7 Light

Sources:
1) Light: A Scalable and Efficient Wavelength-Routed Optical Networks-On-Chip Topology, ASP-DAC’21, Zhidan Zheng et al.



Light: Results in detail
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Number of paths and their SNR values for different WRONoC topologies supporting 32 IP-Cores

λ-router GWOR Light

All signal paths in λ–router have 

similar SNR values around 7dB, which 

is much smaller than the avg. SNR 

value in Light (10.87dB).

880 (89%) paths in GWOR achieve 

smaller SNR values than the average 

SNR of Light (10.86dB).

More than 90% paths in Light have 

larger SNR values than the avg. SNR 

value in both 𝜆–router (7.285dB) and 

GWOR (7.792dB)



WRONoC Research at TUM

• Router design and synthesis:
• Topology synthesis

• CustomTopo (ICCAD’18)

• FAST (DATE’21, TCAD‘22)

• Topology design
• Light (ASP-DAC’21)

• Physical synthesis
• ToPro (ICCAD’21)

• Topology synthesis + physical synthesis
• PSION (ISPD’19, TCAD’20, ICCAD’20)

• Bandwidth maximization: MaxBW (ASP-DAC’20)
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ToPro: Waveguide Router

• Steps:
1. Project a physical-design-aware

topology, e.g. Light, onto the center 
of the routing plane

2. Route shortest paths

3. Crossing resolution by path pushing

• Zero-crossing waveguide routing 
from router to nodes

• Minimize insertion loss & Maximize 
SNR

103

Sources:
1) ToPro: A Topology Projector and Waveguide Router for Wavelength-Routed Optical Networks-on-Chip, ICCAD’21, Zhidan Zheng et al.
2) Topological routing to maximize routability for package substrate, DAC’08, Shenghua Liu et al.

Router rotation and flip 

Crossing resolution by path pushing



WRONoC Research at TUM

• Router design and synthesis:
• Topology synthesis

• CustomTopo (ICCAD’18)

• FAST (DATE’21, TCAD‘22)

• Topology design
• Light (ASP-DAC’21)

• Physical synthesis
• ToPro (ICCAD’21)

• Topology synthesis + physical synthesis
• PSION (ISPD’19, TCAD’20, ICCAD’20)

• Bandwidth maximization: MaxBW (ASP-DAC’20)
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PSION: Template-Based Synthesis

105

Topological features:

• Waveguide connection structure

• MRR topological locations

• MRR resonant wavelengths

• Signal wavelength assignment

• Signal path routing

Physical design features:

• Waveguide routing

• MRR placement

fixed

placeholders

to be determined

Sources:
1) PSION: Combining logical topology and physical layout optimization for Wavelength-Routed ONoCs, ISPD’19, Alexandre Truppel et al.
2) PSION+: Combining logical topology and physical layout optimization for Wavelength-Routed ONoCs, IEEE TCAD 39(12) 2020, Alexandre Truppel et al.
3) PSION 2: Optimizing Physical Layout of Wavelength-Routed ONoCs for Laser Power Reduction, Alexandre Truppel et al.



WRONoC Synthesis by PSION
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Node 1 Node 2 Node 3 Node 4

Node 13 Node 14 Node 15 Node 16
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e 9
N

o
d

e 1
0

N
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d
e 1

1
N

o
d

e 1
2

1 → 6 2 → 3

3 → 4 4 → 2

4 → 6 4 → 7

4 → 10 4 → 15

6 → 5 6 → 2

6 → 7 6 → 10

6 → 11 6 → 13

6 → 15 7 → 8

9 → 13 10 → 11

11 → 12 13 → 9

14 → 1315 → 16

Message list:

Message with the highest
insertion loss

Sources:
1) PSION: Combining logical topology and physical layout optimization for Wavelength-Routed ONoCs, ISPD’19, Alexandre Truppel et al.
2) A scalable, non-interfering, synthesizable Network-on-chip monitor ― extended version, Microprocessors and Microsystems’13, Antti Alhonen et al. 

a “Screen Savor” multimedia application WRONoC router synthesized by PSION

16 nodes, 22 messages
• Full CM would have 240 messages, 

240 MRRs required for Lambda-router
• Here only 27 MRRs are used



WRONoC Research at TUM

• Router design and synthesis:
• Topology synthesis

• CustomTopo (ICCAD’18)

• FAST (DATE’21, TCAD‘22)

• Topology design
• Light (ASP-DAC’21)

• Physical synthesis
• ToPro (ICCAD’21)

• Topology synthesis + physical synthesis
• PSION (ISPD’19, TCAD’20, ICCAD’20)

• Bandwidth maximization: MaxBW (ASP-DAC’20)
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Bandwidth Maximization

108

• Convention: “1-bit communication”

• Periodic transmission spectrum of 
microring resonators

• Input: a WRONoC topology

• Output: the same topology with 
maximized communication 
parallelism

Sources:
1) Maximizing the Communication Parallelism for Wavelength-Routed Optical Networks-on-Chips, ASP-DAC’20, Mengchu Li et al.
2) NoC synthesis flow for customized domain specific multiprocessor systems-on-chip, IEEE TPDS 16(2) 2008, Davide Bertozzi et al.

Bandwidth requirement (unit: MB/s)
of an MPEG-4 decoder application

Transmission spectra of three MRRs.



WRONoC Research at TUM ― Since 2018

• Router design and synthesis:
• Topology synthesis

• CustomTopo (ICCAD’18)

• FAST (DATE’21, TCAD accepted)

• Topology design
• Light (ASP-DAC’21)

• Physical synthesis
• ToPro (ICCAD’21)

• Topology synthesis + physical synthesis
• PSION (ISPD’19, TCAD’20, ICCAD’20)

• Bandwidth maximization: MaxBW (ASP-DAC’20)
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Many thanks to the researchers and 
students working with me:
Tsun-Ming Tseng,
Mengchu Li, Alexandre Truppel, 
Zhidan Zheng, Moyuan Xiao
and to my collaborators:
• Prof. Davide Bertozzi (University 

of Ferrara, Italy)
• Dr. Mahdi Tala (University of 

Ferrara, Italy)
• Prof. Mahdi Nikdast (Colorado 

State University, USA)



PIC variation analysis

Thanks to

Ying Zhu, Bing Li, Grace Li Zhang (TUM)

and to our collaborators

Xunzhao Yin, Cheng Zhuo (Zhejiang),

Huaxi Gu (Xidian),

Tsung-Yi Ho (CUHK)



Mach-Zehnder Interferometer (MZI)
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• Component for light signal transformation

• Behavior of optical signals:
• Directional coupler (beam splitter):
split signal by 50:50; append π/2 in phases of 
diagonal transmission

• Phase shifter: thermally controllable phases 
for programming

transformation matrices 

of directional couplers

transformation matrices 

of phase shifters

matrix-vector

multiplication 



MZI Network as Neural Network

112

• MZIs can be connected to transform 
more signals simultaneously

• Neural networks can be mapped onto 
MZI networks by matrix 
decomposition

Y. Shen, N. C. Harris, S. Skirlo, et al. Deep learning with coherent nanophotonic circuits. naturephotonics, 2017.

: multiplication of column matrices 

formed from the matrices of MZIs



Process Variations of MZIs
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k   0.862, b    0.150

k   0.800, b    0.390

k   0.900, b   0.000

k   0.938, b   0.150

k   1.000, b   0.390

power 𝑝𝑝1 𝑝2 𝑝3

phase 𝜙

𝜙1

𝜙2

𝜙3

nominal curve

𝜙 = 𝑝𝑘 + 𝑏

Phase changes vs applied power: 

characteristic curves of five MZIs under 

process variations

Ma, J. Mower et al. Efficient, compact and low loss thermo-optic phase shifter in silicon. Opt. Express, 2014.

• Same thermal power results in 
different phase changes in 
different MZIs due to process 
variations

• Smaller MZI phases have 
smaller deviations.



Accuracy Degradation of Neural 
Networks due to Process Variations
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• LeNet-5 + Cifar10

• Obvious accuracy drop with 
0.5%–1% random 
variations in the MZI 
phases

• With beyond 3% variations 
the optical network 
becomes unusable.

3σ: variation setting, μ: mean value of accuracy

Ying Zhu, Grace Li Zhang, Bing Li, Xunzhao Yin, Cheng Zhuo, Huaxi Gu, Tsung-Yi Ho, Ulf Schlichtmann. Countering Variations and Thermal Effects for 

Accurate Optical Neural Networks. ICCAD, 2020



Variation Extraction from MZI Network
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Identity matrix I
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• Change MZI phases in 
column four
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• Determine MZI variations by 
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Accuracy Enhancement in
Variation-aware Design
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Software training

With variations

With variation extraction and compensation

#sampled ONNs: 100; 3𝜎 of the phases at 2𝜋: 20%; Aug. LeNet-5: LeNet-5 with more convolutional layers

Ying Zhu, Grace Li Zhang, Bing Li, Xunzhao Yin, Cheng Zhuo, Huaxi Gu, Tsung-Yi Ho, Ulf Schlichtmann. Countering Variations and Thermal Effects for 

Accurate Optical Neural Networks. ICCAD, 2020



Future Challenges of Optical Systems
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• Design and test of optical networks
• Fault test 
• Variation characterization of complex 

MRR and MZI networks

• Fusion of optical interconnects and 
computing components
• Optical interconnects can create test 

paths and enable fault tolerance.
• Overlapped design allows more flexible 

MZI network structures.

• Computing in the optical domain
• More functions can be integrated into the 

optical domain → optic-electro conversion 
as late as possible

• Codesign of optical and electrical systems



Tutorial IV: Integrated Programmable Photonic Circuits

Zhengqi Gao, Duane S. Boning

Department of EECS, MIT

July 10th, San Francisco



ProgrammableIntegrated Photonic Circuit

Figure credit: Wim Bogaerts et al., Nature, 2020.

▪ Contrast to bulk optics (which are individual, discretized)

▪ Integrate multiple optical functions onto a single chip

▪ Several platforms, mostly used: silicon-based CMOS

▪ Active photonic devices (thermal-optic phase shifter)

▪ Exploit run-time reconfigurability

▪ Analogy to the concept of FPGA

▪ Manipulate light (EM wave), instead of electric signal

▪ Physical abstraction is {E, H}, instead of {I, V}.

▪ Simulation more complicated (PDE, Maxwell Equations)

Terminology



FPGA Reconfigurability

▪ A large number of logic blocks (e.g., lookup tables, flip-flops, multiplexers)

▪ An interconnect routing network, which can be programmed

What about an integrated programmable photonic circuit?

Hardware side

Software side▪ Program FPGA with HDL (e.g., VHDL, Verilog)



Hardware Side

Figure credit: Wim Bogaerts et al., Nature, 2020.

Tunable Basic Unit (TBU)

▪ An active 2x2 MZI device

▪ Two degrees of freedom

▪ Thermal/electric-optical phase shifters

▪ Three states: bar, cross, partial

▪ Several implementations (figs. c, d, e)

Remarks: (i) analog computing, (ii) topology difference



Topology I: Feedforward Mesh

Reck’s design

One MZI

Remarks: (i) Reck’s design could implement any complex unitary N-by-N matrix with N(N-1)/2 MZIs. 

(ii) Feedforward: light only propogate from left to right, or vice versa; no loops.



Clement’s design

One MZI

Remarks: (i) Similar to Reck’s: N(N-1)/2 MZIs needed; feedforward. 

(ii) Difference: better tolerance to error; more compact.

Topology I: Feedforward Mesh



Singular value decomposition (SVD):

M is a complex (real) matrix   => U and V are unitary (orthogonal) matrices  

Motivates a novel DL hardware accelerator: Optical Neural Network

Figure credit: Yichen Shen et al., Nature, 2017.

Topology I: Feedforward Mesh



Q1: Let’s implement an optical ring resonator on a feedforward mesh!

---- We cannot... No closed loops.

Q2: Let’s implement an IIR filter on a feedforward mesh!

---- Again, we cannot… No closed loops.

Topology I: Feedforward Mesh

Remark: Feedforward mesh is thus 

more specialized as DL accelator.

Ring resonator

For a general optical application?

IIR filter

z-1

z-1

+

+



Topology II: Recirculating Mesh (Main Focus)

Figure credit: Wim Bogaerts et al., Nature, 2020.

Common realizations: Square, hexagonal, triangular mesh

Figure credit: Leimeng Zhuang et al., Optica, 2015.

A “photonic FPGA”: Fast prototyping integrated silicon photonic circuits



Go back to Software Side

▪ Feedforward mesh (Reck’s and Clement’s) has analytical solution

▪ This tutorial will focus on recirculating mesh (less touched)

▪ No analytical solution available

▪ Take mathematical and algorithmical perspectives

▪ How do we program it?

▪ Recall: mature tools for electronic FPGA; digital.

▪ But for programmable photonic circuits, it’s analog computing.  

Remark: In a nutshell, we are doing synthesis.  



Modeling and Simulation

Scattering matrix relation for a TBU

A time-harmonic chromatic optical signal is represented by: aejwt (a is complex)

?



Modeling and Simulation

Scattering matrix relation for a TBU

A time-harmonic chromatic optical signal is represented by: aejwt (a is complex)

Remarks: (i) This is the form usually used in a feedforward case

(ii) But more careful treatment needs to be done in a recirculating case



Modeling and Simulation

Scattering matrix relation for a TBU

A time-harmonic chromatic optical signal is represented by: aejwt (a is complex)

{𝜃, 𝜙}: tunable phase shifts (design variable)

c: light speed in vaccum

neff(w): effective index of propogating mode

𝛼: tunable basic unit (TBU) loss

L: length of waveguide in the TBU

Further take waveguide into consideration:



Modeling and Simulation

Scattering matrix relation for a TBU

A time-harmonic chromatic optical signal is represented by: aejwt (a is complex)

Remark I: Bar, cross, and partial state

Bar state: |𝜃 − 𝜙| = 𝜋 Example: 𝜃 = 0,  𝜙 = 𝜋

Cross state: 𝜃 = 𝜙 Example: 𝜃 = 𝜙 = − 0.5𝜋

Other cases are referred to as the partial state



Modeling and Simulation

Scattering matrix relation for a TBU

A time-harmonic chromatic optical signal is represented by: aejwt (a is complex)

Remark II: Why it doesn’t matter in a feedforward case?
waveguide

TBU

Credit: Saumil Bandyopadhyay et al., Optica, 2021.



Modeling and Simulation

Scattering matrix relation for a TBU

A time-harmonic chromatic optical signal is represented by: aejwt (a is complex)

Remark II: Why it doesn’t matter in a feedforward case?

Figure credit: Saumil Bandyopadhyay et al., Optica, 2021.

All signals

All signals

where 6 is the number of columns

Thus, we could omit the impact of waveguide



Modeling and Simulation

Scattering matrix relation for a TBU

A time-harmonic chromatic optical signal is represented by: aejwt (a is complex)

Remark III: Why it does matter in a recirculating case?

dependence dependence



Modeling and Simulation

Scattering matrix relation for a TBU

A time-harmonic chromatic optical signal is represented by: aejwt (a is complex)

Remark IV: TBU is a bi-directional device:

{𝜃, 𝜙}: tunable phase shifts (design variable)

c: light speed in vaccum

neff(w): effective index of propogating mode

𝛼: tunable basic unit (TBU) loss

L: length of waveguide in the TBU



Modeling and Simulation

Frequency-domain scattering matrix simulation

a1

a2

a3

a4

a5

a6

b1

b2

b3

b4

b5

b6

F1 F2

F1 F2

A system of linear equations!



Modeling and Simulation

Frequency-domain scattering matrix simulation

a1

a2

a3

a4

a5

a6

b1

b2

b3

b4

b5

b6

F1 F2

F1 F2



Routing Analysis

▪ Reasonable assumption: all TBUs in bar or cross states because of ‘routing’.

Node A

Node E

Node B

Node C

Node D

Node A

Node E

▪ Example: How to route an optical signal from node A to node E? -- Fairly easy 



Routing Analysis

▪ Reasonable assumption: all TBUs in bar or cross states because of ‘routing’.

Node A

Node E

Node B

Node C

Node D

▪ Example: How to route an optical signal from node A to node E? -- Fairly easy 

Recall the S-matrix of a TBU in bar/cross state:

The frequency response of is:

‘4’ represents the number of TBUs the trajectory bypasses 



Routing Analysis

▪ Reasonable assumption: all TBUs in bar or cross states because of ‘routing’.

▪ Define Path length = #TBUs bypassed

▪ Analyzing path length is very important

▪ It determines the frequency response (previous page)

▪ Application I: N signals, goes through the programmable photonic circuit, maintaining phases

▪ Realize N paths with the same path length. 

▪ Application II: Work as time delay element for filtering

▪ Realize paths with length constructing arithmetic sequence, e.g., {1,3,5,7,…}. 



Routing Analysis

Conclusion I (warm up)

# floating nodes = 4N + 4M

# non-floating nodes = 4NM

# undirected optical path = 2N + 2M

# TBUs = N(M + 1) + M (N + 1)

# Configs = 2N(M + 1) + M(N + 1)



Routing Analysis

Conclusion II: maximum path length = 4NM + 1

Intuition: a path starts and ends both at a floating 

node, with non-floating nodes in the middle. 

Path length = #Nodes - 1

where #Nodes = 2 + #Non-floating Nodes

=> Max #Nodes = 4NM + 2 

=> Max Path length = 4NM + 1 



Routing Analysis

Conclusion III: Is any path length x in [1, 4NM+1] realizable on a N-by-M square mesh? Unluckily, no….

Example: Try x = 3 on this 2-by-2 squre mesh

Our finding: If both N and M are even,

Any x = 0, 1, 2 (mod 4) in [1, 4NM+1] is realizable  



Routing Analysis

Conclusion III: Is any path length x in [1, 4NM+1] realizable on a N-by-M square mesh?

Our findings:

Any x = 0, 1, 2 (mod 4) in [1, 4NM+1] is realizable  

If both N and M are even,

If both N is even and M is odd,

Any x = 0, 1, 2 (mod 4) in [1, 4NM+1] is realizable  

Any x = 3 (mod 4) in [2M + 1, 4NM+1− 2M] is realizable  

Other cases….

Single path reliazability



Routing Analysis

Other questions when multiple paths considered:

▪ Recall there are (2N + 2M) paths in total, what are their 

sum and standard deviation?

▪ Given a N-by-M square mesh, and a desired path 

length x, how many paths could we realize?

Refer to: https://arxiv.org/abs/2306.12607



Functional Synthesis

▪ Route several signals on this programmable photonic circuits?

▪ Preliminary investigation published in the literature (See Aitor Lopez et al., OE, 2020)

▪ Our view: still an open problem, missing strict analysis

▪ Graph theory might be helpful 

▪ Besides routing, we also want other functions, e.g., splitting, filtering, WDM

▪ Most demos are hand crafted:✗size goes up, realize several functions.

▪ Can we automatically synthesize light processing function?

▪ Use analytical synthesis? --- No closed form for recirculating structure



Functional Synthesis

# TBUs = N(M + 1) + M (N + 1)

# Phase shifts = 2N(M + 1) + 2M(N + 1) ~ 4NM

We want to adjust phase shifts, to realize a desired function.

Formulate as an optimization problem!

Challenge: high-dimensional space

Efficient solution: Gradient descent w/ analytical gradients



Functional Synthesis
We do a simplification

Remark: We consider this simplified case, so that we could derive the transfer function analytically 



April 12, 2022

V matrix: Scattering matrix relation for a vertical TBU

Functional Synthesis



April 12, 2022

Functional Synthesis

V matrix: Scattering matrix relation for a vertical TBU



April 12, 2022

H matrix: Scattering matrix relation for a horizontal TBU

Functional Synthesis



April 12, 2022

Build the overall scattering matrix iteratively (the j-th to the j+1-th column)

=> where

Functional Synthesis



April 12, 2022

Build the overall scattering matrix iteratively (the 0-th to the M-th column)

=> => where

Functional Synthesis



April 12, 2022

Define input and output and use a cost function: 

= >

Forward 

input  a0
(I)

Backward

input aM
(O)

Forward direction

We know how to build matrix T, and all operations invovled are differentiable

Functional Synthesis



Functional Synthesis

Routing Splitting Filtering WDM



Functional Synthesis

▪ Local minimum is accpetable

▪ Random initialization doesn’t impact the synthesized results much

▪ Even could realize two functions at the same time

Ref: Zhengqi Gao et al., Photonics Res. 2023. (highlighted as Editor’s pick)

Random 

init.1

Random 

init.2

Two 

functions



Online Demo

=> A light-weight Python package, Spode, specialized for programmable photonic circuit

https://colab.research.google.com/drive/1lLw5831I-

cmhHSIQOWGuc7vPmQEsNKoq?usp=sharing

Remark: The package is for ease of research; integrate simulation, visualization, circuit generator.

In previous page, we show how to derive gradients analyticall in a simplified square mesh

What about gradient calculation in any topology (hexagonal, triangular, even mix)?

https://colab.research.google.com/drive/1lLw5831I-cmhHSIQOWGuc7vPmQEsNKoq?usp=sharing


Discussions and Future Directions

▪ Impact of the photodetector

▪ Error cascading (See Saumil’s Optica 2021 paper)

▪ Provable routing algorithm

▪ Hardware demonstration
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