
Bayesian Elegance in Resolving Semiconductor 
Manufacturing Challenges

Zhengqi Gao

Department of EECS, MIT
zhengqi@mit.edu

Jan 25, 2024

Presented at Lam Research Webminar, Jan 25, 2024



Semiconductor Manufacturing
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Figure Credit: https://shorturl.at/uBFH1

Problems: yield estimation, recipe optimization, process control, variation analysis,…   
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§ Fact 1: Costly function evaluation (usually black-box)

§ Simulators (COMSOL, Coventor Products, SPICE, etc.,) usually run slowly

§ Lab measurement/testing takes even longer time
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§ Fact 1: Costly function evaluation (usually black-box)

§ Simulators (COMSOL, Coventor Products, SPICE, etc.,) usually run slowly

§ Lab measurement/testing takes even longer time

§ Fact 2: A restricted amount of data

§ Algorithms asymptotic performances rely on the amount of data

§ Fewer data, less accurate (e.g., regression accuracy)

§ Fact 3: Intricate correlations among various scenarios

§ Early-stage and late-stage correlations (e.g., front-end and back-end)

§ Multiple-corner correlations (e.g., {SS, TT, FF, SF, FS} process corners)
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§ Aim for a framework

§ Only assumes black-box function

§ Work with limited data

§ Can easily embed human knowledge 

Bayesian Method: P(A|B) = 
P(B|A) P(A) 

P(B)
µ P(B|A) P(A) 
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Bayesian Method: P(A|B) = 
P(B|A) P(A) 

P(B)
µ P(B|A) P(A) 

In essence, Bayes formula says: Posterior µ Likelihood x Prior

§ P(B) is usually not explicitly needed (or sometimes difficult to evaluate)

§ Only P(A) and P(B|A) are needed, as P(A,B)= P(A)P(B|A) and next 

integration/summation marginalizes ‘A’ out.

§ If P(A) and P(B|A) are Gaussian, then P(A|B) is Gaussian [1].

§ For arbitrary P(A) and P(B|A), P(A|B) might not have a closed form.
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Bayesian Method: P(A|B) = 
P(B|A) P(A) 

P(B)
µ P(B|A) P(A) 

Prior P(x) Likelihood P(y|x) Posterior P(x|y) 

No closed form

§ For a general case where posterior doesn’t have a closed form

§ Variational Inference (e.g., mean-field) uses qq to approximate it.

§ Sampling method (e.g., MCMC) is used to draw samples.
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Formulation – Linear regression as an example [11]

Given D={(xi, yi) | i=1, 2, …, N}, find coefficients w such that y»<w, f(x)> 

linear regressionSolve the optimization problem:

Least square:

Question: What if N<F? 

where                      is the sample matrix; n-th row is 

Limited data regime, matrix not invertible; Use ridge regression 
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Bayesian Approach

Assume prior on model coefficient:

Likelihood function:

<=>   Assume approximation error  and

Posterior has closed form:

where MAP Estimator
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MAP Estimator

How to set m0, alpha, beta? 

Key: Set m0 with early-stage info!  

Step1: Construct a low-fidelity (early-stage) data set  

Step2: Perform least square on it to obtain w; take it as m0 

Step3: Combine with only few real data; use the MAP estimator

Note: low-fidelity data acquisition is cheap, can be a lot.
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Numerical Results

MAP and Prior use 50 
low-fidelity samples

Modeling the phase of S parameter under variation
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Numerical Results

Modeling the magnitude of S parameter under variation

MAP with Nl = 30 & N= 10

Linear regression with N = 30

Both gives Log(MSE) = -1
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Numerical Results

Modeling the magnitude of S parameter under variation

MAP with Nl = 80 & N= 10

Linear regression with N = 40

Both gives Log(MSE) = -2

Remarkable! Only 10 expensive data 
used in MAP for good accuracy 
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Small size
Large variation

65nm 32nm 22nm

Circuit performances
uncertainty under 
process variation

The problem of parametric yield estimation [2]:

Given a desired design, how likely does the fabricated design pass the Spec test?

Math formulation:

Process Design Kit (PDK) gives the random variation e added in manufacturing.

The desired design is denoted by w*.

What is the probability that h=f(w* + e) locates in a certain “pass” region ?
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Trivial approach --- Monte Carlo

Step 1: Generate N samples {w*+ e1, w*+ e2, …, w*+ eN} 

Step 2: Simulate the corresponding {h1, h2, …, hN}.

Step 3: Examine each sample locate in W or not {x1, x2, …, xN}

Step 3: Calculate the ratio how many of the N samples locate in W: 

Figure credit: https://shorturl.at/dqsL2

Binary variable 
1 = ‘inside’, 0 = ‘outside’
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Reinterpret MC

=> =>

Conditional independence

Maximum Likelihood Estimation (MLE):

=>
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When multiple corners?

What if we now want to estimate the yield at K corners (e.g., {TT,SS,FF,FS,SF})?

Certainly, we can apply MC independently at each corner:

But, if yield at TT is 70%, the yield at other corners should be around 70% as well!

Embed it into the prior distribution!
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Prior distribution:

Mu and Sigma are hyper-parameters control the shape of the prior

Likelihood function :

Posterior distribution:

Maximum-a-posteriori (MAP) Estimation:

For example, all K elements in Mu equal 70%, Sigma is an Identity matrix 

How to interpret MAP?
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A few technical details

In essence, the proportional sign means: 

Z is some normalization constant making the expression valid as a distribution

From Bayes theorem Z = p(D) and independent of Beta.

MAP estimation: Maximize the product of the prior and likelihood (Z can be ignored!) 

Equivalently,  in logarithm. Advantage: reduce numerical error (Overflow).

or
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A few technical details

where

§ Observation 1: no closed form for posterior distribution

§ Observation 2: Given Mu and Sigma, we can solve the MAP estimator Beta.

How to set hyper-parameters {Mu, Sigma}?
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A simplified algorithm flow; More details refer to [2]

Step1: Given the observation {xn,k} and initialize hyper-parameters

Step2: Use IRLS (Newton method) to calculate MAP (i.e., minimize the -log)

All K elements in Mu initialize to the same, and Sigma to a diagonal matrix

Step3: Use Laplacian approximation to define an approximate posterior 

An iteration algorithm using gradient and Hessian of the -log

Step4: Use Expectation-Maximization to update hyper-parameters

Step5: If convergence not reached, go to Step 2 with the new hyper-parameters 
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Numerical examples

Setting: 65nm PDK, five process corners, simulate in Hspice, error from 30 repeated runs

Estimation Error for MC and BI-BD (proposed) 

Baseline: independently run MC at each corner (ignore correlations!)
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Some extensions

§ Recall we deliberately introduce a Gaussian as prior

§ Not necessarily, this is at our choice.

§ In fact, Gaussian prior + Bernoulli likelihood -> no closed-form posterior

§ How about a prior resulting closed-form posterior? Easier calculation?

§ Indeed, we can do so with the concept of conjugate prior. [3]
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Some extensions

§ What if yield is very close to 100%?

§ In literature, usually referred to as rare failure rate estimation [4,5,6,7]

§ Practical usage/example: SRAM cell [4]

§ Challenge: if failure rate = 1e-6, we need (roughly) at least 1e7 MC samples!

§ Problem: Estimate rare failure rate with as few samples as possible

§ Metric: #samples used && logarithm prediction error

§ Past: Multiple-corner failure rate [6]; Recent: single-corner with NF [5]
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Minimum Testing [9]

Figure credit: https://shorturl.at/ilGKQ

§ Left: Test every location to characterize spatial variation.

§ Right: Only few are tested, and others are inferred.

§ Prior is introduced to make the system solvable. [?]
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Parameter Extraction [10]

§ Given limited I-V measurement, extract MOS parameters.

§ Prior: Novel transistor relates to existing transistor

Figure Credit: https://shorturl.at/prNV9
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Bayesian Optimization [13,14,15]

§ Works with Black-box simulator

§ Gaussian process regression (GPR) as surrogate model

§ Work well in industrial examples (dim <= 40), e.g., analog sizing, photonic device design.

§ Do notice that the definition of GPR requires a mean and a covariance (prior!)

Photonic Y-branch opt Electronic Opamp
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Classical Parametric MLE: max p(x|w) 

Where p(x|w) has a parametric form 

MAP: Further introduce a prior p(w) and max p(w|x)

What is Likelihood Free Inference?

We can only sample an x from p(x|w), but cannot evaluate the distribution value  

“simulator-based likelihood”

A lot of approaches, e.g., approximate Bayesian computation (ABC)
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§ Bayesian methods naturally suit a lot of semiconductor manufacturing problems.

§ Need to excavate the knowledge, correlations, and embed them with the prior.

§ Correct embedding improves sample efficiency!

§ Usually, the problem is converted to inference a posterior distribution.

§ Posterior might not be analytical --- variational inference, or sampling.

§ EM method for a full Bayesian treatment (inference hyper-parameters)
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Disclaimer: This slide deck primarily referenced the presenter’s papers for convenience, not aiming to be comprehensive.


