

KirchhoffNet: Hardware Acceleration of ODE-Driven Models

Zhengqi Gao¹, Fan-keng Sun¹, Ron Rohrer², and Duane S. Boning^{1*}

¹Dept. EECS MIT, ²Dept. ECE CMU, ^{*}accepted by ICCAD'24

Introduction

- ODE-Driven Neural Networks attract huge interests
 - Neural ODE (NODE), State-Space Model (SSM)
 - **Denoising Diffusion Probabilistic Model (DDPM)**
- These models are usually time consuming to run on GPUs
 - Reason: Discretization along 'time' axis; Step-by-step marching

- Here 'time' is a unitless numerical variable, i.e., t = 1 is not 1 sec
- Motivation: make 'time' a real physical quantity, acceleration!

NODE $\frac{d\mathbf{h}(t)}{dt} = f(\mathbf{h}(t), t, \theta)$

$$x'(t) = \mathbf{A}x(t) + \mathbf{B}u(t)$$
$$y(t) = \mathbf{C}x(t) + \mathbf{D}u(t)$$

KirchhoffNet: Kirchhoff Current Law (KCL) Enabled Computing

An illustrative RC example from high school

- Prep: Closed switch for long time; Voltage at black dot is v
- Run: Open the switch; KCL states net current flow = 0
- R for Resistor with i=v/R; C for Capacitor with i = Cdv/dt
- RC ODE: Cdv/dt+v/R = 0; dv/dt = av, where a = -1/RC

- $i_{sd} = g(v_s, v_d, \theta_{sd})$ Extend to complex ODE right-hand side
 - Assume a nonlinear I-V device/element g
 - Write KCL for the node shown:

Property: Adjust Capacitor C to be smaller, then on-chip forward can be very fast $v(t+\Delta t) = v(t) + rac{\Delta t}{C} [\sum_{ ext{into } n_s} g(v_s, v_d, heta_{sd}) - \sum_{ ext{out of } n_s} g(v_s, v_d, heta_{sd})]$ Shrink C by Const \Leftrightarrow Shrink t by Const (C = 1 Farad, T = 1s) ⇔ (C = 1 pF, T = 1 ps)

Deriving all nodes yields a set of ODEs

	$v_1(t)$	$v_7(t)$	$v_1(t)$	$v_7(t)$	$v_1(t)$	$v_6(t)$	
Input	Layer 1: solv	e in [0, <i>T</i>]	Layer 2: solv	ve in [<i>T</i> , 2 <i>T</i>]	Layer 3: solv	e in [2 <i>T</i> , 3 <i>T</i>]	Output

Black solid arrow: non-linear I-V device Gray dashed arrow: fixed capacitor

T: hyper-parameter controls run-time

Numerical Results

Example: A ReLU-shape nonlinear I-V

(*)

- Adjustable resistor:
 - MOS working in linear region
 - Gate-controlled voltage as theta
- Ideal-switch: diode-connected MOS

Current Source = $\theta_{sd,2}$

 $g(v_s, v_d, heta_{sd}) = \operatorname{ReLU}(heta_{sd,1}(v_s - v_d) + heta_{sd,2})$

- Adjustable current source: Current mirror, paralleled connected MOS
- KirchhoffNet limits ODE form, doesn't have traditional layers (linear, conv, ...)
 - NODE on GPU $\frac{d\mathbf{h}(t)}{dt} = f(\mathbf{h}(t), t, \theta)$: can choose f to be a NN made up of linear, conv...
 - KirchhoffNet (*): the ODE right-hand side form determined by circuit topology

	_			
Tabla I.	Dagraccian	Λ and Λ and Λ	marahla +	
l'able l'	Regression	ACC COM	Darable L	

	Friedman	Housing	Diabete	
MLP-s	9.97e-4 / 181	1.46e-2 / 391	2.71e-2 / 421	
KirchhoffNet-s	8.81e-4 / 168	1.55e-2 / 360	2.91e-2 / 528	
MLP-m	1.35e-4 / 561	1.32e-2 / 841	2.61e-2 / 889	
KirchhoffNet-m	1.95e-5 / 528	1.25e-2 / 840	3.09e-2 / 840	
MLP-1	6.28e-5 / 1596	1.27e-2 / 1551	2.67e-2 / 1581	
KirchhoffNet-1	1.11e-5 / 1520	1.16e-2 / 1520	3.48e-2 / 1520	

Table II: Image Classification needs meticulous circuit topology design to attain SOTA CNN; but our effort already comparable to SOTA NODE

		Model	MNIST	CIFAR-10
•	Proposed	KirchhoffNet 99.39 ± 0.06 73.4		$ 73.41 \pm 0.12$
	C 1	Neural ODE [34]	96.40 ± 0.50	53.70 ± 0.20
	Baselines	IL Neural ODE [34]	98.20 ± 0.10 99.10	60.60 ± 0.40 73.40
		2nd Neural ODE [38]	99.20	72.80

- Pytorch-based circuit-level simulation/verification on GPU w/ V100s

Generation: verified on extensive 2D benchmarks

Conclusions

- KirchhoffNet accelerates ODE-driven models
- Run slowly on GPU (so is NODE)
- Thus, experiments limited in scale
- The promised fast run-time is on the

fabricated hardware, not on GPU

- Future works: (i) Real analog circuit hardware design, (ii) SPICE simulation, (iii) Chip tapeout
- Read the Arxiv paper for more results!

Generation on MNIST

